Cargando…
An Efficient Big Data Anonymization Algorithm Based on Chaos and Perturbation Techniques †
The topic of big data has attracted increasing interest in recent years. The emergence of big data leads to new difficulties in terms of protection models used for data privacy, which is of necessity for sharing and processing data. Protecting individuals’ sensitive information while maintaining the...
Autores principales: | Eyupoglu, Can, Aydin, Muhammed Ali, Zaim, Abdul Halim, Sertbas, Ahmet |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512893/ https://www.ncbi.nlm.nih.gov/pubmed/33265463 http://dx.doi.org/10.3390/e20050373 |
Ejemplares similares
-
Contextual Anonymization for Secondary Use of Big Data in Biomedical Research: Proposal for an Anonymization Matrix
por: Rumbold, John, et al.
Publicado: (2018) -
A distributed computing model for big data anonymization in the networks
por: Ashkouti, Farough, et al.
Publicado: (2023) -
Algorithms for Constructing Anonymizing Arrays
por: Lanus, Erin, et al.
Publicado: (2020) -
Genetic Algorithm Application in Optimization of Wireless Sensor Networks
por: Norouzi, Ali, et al.
Publicado: (2014) -
Algorithms to anonymize structured medical and healthcare data: A systematic review
por: Sepas, Ali, et al.
Publicado: (2022)