Cargando…
Characterization of the Stroke-Induced Changes in the Variability and Complexity of Handgrip Force
Introduction: The variability and complexity of handgrip forces in various modulations were investigated to identify post-stroke changes in force modulation, and extend our understanding of stroke-induced deficits. Methods: Eleven post-stroke subjects and ten age-matched controls performed voluntary...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512896/ https://www.ncbi.nlm.nih.gov/pubmed/33265466 http://dx.doi.org/10.3390/e20050377 |
Sumario: | Introduction: The variability and complexity of handgrip forces in various modulations were investigated to identify post-stroke changes in force modulation, and extend our understanding of stroke-induced deficits. Methods: Eleven post-stroke subjects and ten age-matched controls performed voluntary grip force control tasks (power-grip tasks) at three contraction levels, and stationary dynamometer holding tasks (stationary holding tasks). Variability and complexity were described with root mean square jerk (RMS-jerk) and fuzzy approximate entropy (fApEn), respectively. Force magnitude, Fugl-Meyer upper extremity assessment and Wolf motor function test were also evaluated. Results: Comparing the affected side with the controls, fApEn was significantly decreased and RMS-jerk increased across the three levels in power-grip tasks, and fApEn was significantly decreased in stationary holding tasks. There were significant strong correlations between RMS-jerk and clinical scales in power-grip tasks. Discussion: Abnormal neuromuscular control, altered mechanical properties, and atrophic motoneurons could be the main causes of the differences in complexity and variability in post-stroke subjects. |
---|