Cargando…
Adiabatic Quantum Computation Applied to Deep Learning Networks
Training deep learning networks is a difficult task due to computational complexity, and this is traditionally handled by simplifying network topology to enable parallel computation on graphical processing units (GPUs). However, the emergence of quantum devices allows reconsideration of complex topo...
Autores principales: | Liu, Jeremy, Spedalieri, Federico M., Yao, Ke-Thia, Potok, Thomas E., Schuman, Catherine, Young, Steven, Patton, Robert, Rose, Garrett S., Chamka, Gangotree |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512898/ https://www.ncbi.nlm.nih.gov/pubmed/33265470 http://dx.doi.org/10.3390/e20050380 |
Ejemplares similares
-
Dynamic Topology Reconfiguration of Boltzmann Machines on Quantum Annealers
por: Liu, Jeremy, et al.
Publicado: (2020) -
Adiabatic quantum linear regression
por: Date, Prasanna, et al.
Publicado: (2021) -
Quantum adiabatic evolution
por: Joye, A, et al.
Publicado: (1993) -
Determining probability density functions with adiabatic quantum computing
por: Robbiati, Matteo, et al.
Publicado: (2023) -
Training Neural Networks with Universal Adiabatic Quantum Computing
por: Abel, Steve, et al.
Publicado: (2023)