Cargando…
MOTiFS: Monte Carlo Tree Search Based Feature Selection
Given the increasing size and complexity of datasets needed to train machine learning algorithms, it is necessary to reduce the number of features required to achieve high classification accuracy. This paper presents a novel and efficient approach based on the Monte Carlo Tree Search (MCTS) to find...
Autores principales: | Chaudhry, Muhammad Umar, Lee, Jee-Hyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512904/ https://www.ncbi.nlm.nih.gov/pubmed/33265475 http://dx.doi.org/10.3390/e20050385 |
Ejemplares similares
-
Monte Carlo Tree Search-Based Recursive Algorithm for Feature Selection in High-Dimensional Datasets
por: Chaudhry, Muhammad Umar, et al.
Publicado: (2020) -
Feature Selection for Regression Based on Gamma Test Nested Monte Carlo Tree Search
por: Li, Ying, et al.
Publicado: (2021) -
QuasiMotiFinder: protein annotation by searching for evolutionarily conserved motif-like patterns
por: Gutman, Roee, et al.
Publicado: (2005) -
Selective Inhibitor
Design for Kinase Homologs Using
Multiobjective Monte Carlo Tree Search
por: Yoshizawa, Tatsuya, et al.
Publicado: (2022) -
RNA inverse folding using Monte Carlo tree search
por: Yang, Xiufeng, et al.
Publicado: (2017)