Cargando…
Identification of Auditory Object-Specific Attention from Single-Trial Electroencephalogram Signals via Entropy Measures and Machine Learning
Existing research has revealed that auditory attention can be tracked from ongoing electroencephalography (EEG) signals. The aim of this novel study was to investigate the identification of peoples’ attention to a specific auditory object from single-trial EEG signals via entropy measures and machin...
Autores principales: | Lu, Yun, Wang, Mingjiang, Zhang, Qiquan, Han, Yufei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512905/ https://www.ncbi.nlm.nih.gov/pubmed/33265476 http://dx.doi.org/10.3390/e20050386 |
Ejemplares similares
-
Approximate entropy and support vector machines for electroencephalogram signal classification
por: Zhang, Zhen, et al.
Publicado: (2013) -
Identification of Electroencephalogram Signals in Alzheimer's Disease by Multifractal and Multiscale Entropy Analysis
por: Ando, Momo, et al.
Publicado: (2021) -
Electroencephalogram approximate entropy influenced by both age and sleep
por: Lee, Gerick M. H., et al.
Publicado: (2013) -
Fuzzy Entropy Analysis of the Electroencephalogram in Patients with Alzheimer’s Disease: Is the Method Superior to Sample Entropy?
por: Simons, Samantha, et al.
Publicado: (2018) -
Electroencephalogram Profiles for Emotion Identification over the Brain Regions Using Spectral, Entropy and Temporal Biomarkers
por: Al-Qazzaz, Noor Kamal, et al.
Publicado: (2019)