Cargando…
End-to-End Deep Neural Networks and Transfer Learning for Automatic Analysis of Nation-State Malware
Malware allegedly developed by nation-states, also known as advanced persistent threats (APT), are becoming more common. The task of attributing an APT to a specific nation-state or classifying it to the correct APT family is challenging for several reasons. First, each nation-state has more than a...
Autores principales: | Rosenberg, Ishai, Sicard, Guillaume, David, Eli (Omid) |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512909/ https://www.ncbi.nlm.nih.gov/pubmed/33265480 http://dx.doi.org/10.3390/e20050390 |
Ejemplares similares
-
Supervised and Unsupervised End-to-End Deep Learning for Gene Ontology Classification of Neural In Situ Hybridization Images †
por: Cohen, Ido, et al.
Publicado: (2019) -
Answering medical questions in Chinese using automatically mined knowledge and deep neural networks: an end-to-end solution
por: Zhang, Li, et al.
Publicado: (2022) -
Transfer Learning for Image-Based Malware Detection for IoT
por: Panda, Pratyush, et al.
Publicado: (2023) -
Performance evaluation of deep neural network on malware detection: visual feature approach
por: Anandhi, V., et al.
Publicado: (2022) -
An End-to-End Deep Learning Approach for State Recognition of Multifunction Radars
por: Xu, Xinsong, et al.
Publicado: (2022)