Cargando…

Bayesian Nonparametric Modeling of Categorical Data for Information Fusion and Causal Inference †

This paper presents a nonparametric regression model of categorical time series in the setting of conditional tensor factorization and Bayes network. The underlying algorithms are developed to provide a flexible and parsimonious representation for fusion of correlated information from heterogeneous...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiong, Sihan, Fu, Yiwei, Ray, Asok
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512915/
https://www.ncbi.nlm.nih.gov/pubmed/33265485
http://dx.doi.org/10.3390/e20060396
_version_ 1783586267453194240
author Xiong, Sihan
Fu, Yiwei
Ray, Asok
author_facet Xiong, Sihan
Fu, Yiwei
Ray, Asok
author_sort Xiong, Sihan
collection PubMed
description This paper presents a nonparametric regression model of categorical time series in the setting of conditional tensor factorization and Bayes network. The underlying algorithms are developed to provide a flexible and parsimonious representation for fusion of correlated information from heterogeneous sources, which can be used to improve the performance of prediction tasks and infer the causal relationship between key variables. The proposed method is first illustrated by numerical simulation and then validated with two real-world datasets: (1) experimental data, collected from a swirl-stabilized lean-premixed laboratory-scale combustor, for detection of thermoacoustic instabilities and (2) publicly available economics data for causal inference-making.
format Online
Article
Text
id pubmed-7512915
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-75129152020-11-09 Bayesian Nonparametric Modeling of Categorical Data for Information Fusion and Causal Inference † Xiong, Sihan Fu, Yiwei Ray, Asok Entropy (Basel) Article This paper presents a nonparametric regression model of categorical time series in the setting of conditional tensor factorization and Bayes network. The underlying algorithms are developed to provide a flexible and parsimonious representation for fusion of correlated information from heterogeneous sources, which can be used to improve the performance of prediction tasks and infer the causal relationship between key variables. The proposed method is first illustrated by numerical simulation and then validated with two real-world datasets: (1) experimental data, collected from a swirl-stabilized lean-premixed laboratory-scale combustor, for detection of thermoacoustic instabilities and (2) publicly available economics data for causal inference-making. MDPI 2018-05-23 /pmc/articles/PMC7512915/ /pubmed/33265485 http://dx.doi.org/10.3390/e20060396 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Xiong, Sihan
Fu, Yiwei
Ray, Asok
Bayesian Nonparametric Modeling of Categorical Data for Information Fusion and Causal Inference †
title Bayesian Nonparametric Modeling of Categorical Data for Information Fusion and Causal Inference †
title_full Bayesian Nonparametric Modeling of Categorical Data for Information Fusion and Causal Inference †
title_fullStr Bayesian Nonparametric Modeling of Categorical Data for Information Fusion and Causal Inference †
title_full_unstemmed Bayesian Nonparametric Modeling of Categorical Data for Information Fusion and Causal Inference †
title_short Bayesian Nonparametric Modeling of Categorical Data for Information Fusion and Causal Inference †
title_sort bayesian nonparametric modeling of categorical data for information fusion and causal inference †
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512915/
https://www.ncbi.nlm.nih.gov/pubmed/33265485
http://dx.doi.org/10.3390/e20060396
work_keys_str_mv AT xiongsihan bayesiannonparametricmodelingofcategoricaldataforinformationfusionandcausalinference
AT fuyiwei bayesiannonparametricmodelingofcategoricaldataforinformationfusionandcausalinference
AT rayasok bayesiannonparametricmodelingofcategoricaldataforinformationfusionandcausalinference