Cargando…
Recognizing Information Feature Variation: Message Importance Transfer Measure and Its Applications in Big Data
Information transfer that characterizes the information feature variation can have a crucial impact on big data analytics and processing. Actually, the measure for information transfer can reflect the system change from the statistics by using the variable distributions, similar to Kullback-Leibler...
Autores principales: | She, Rui, Liu, Shanyun, Fan, Pingyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512920/ https://www.ncbi.nlm.nih.gov/pubmed/33265491 http://dx.doi.org/10.3390/e20060401 |
Ejemplares similares
-
Attention to the Variation of Probabilistic Events: Information Processing with Message Importance Measure
por: She, Rui, et al.
Publicado: (2019) -
Storage Space Allocation Strategy for Digital Data with Message Importance
por: Liu, Shanyun, et al.
Publicado: (2020) -
Matching Users’ Preference under Target Revenue Constraints in Data Recommendation Systems
por: Liu, Shanyun, et al.
Publicado: (2019) -
Humanizing Big Data: Recognizing the Human Aspect of Big Data
por: Helzlsouer, Kathy, et al.
Publicado: (2020) -
Robust, practical and comprehensive analysis of soft compression image coding algorithms for big data
por: Xin, Gangtao, et al.
Publicado: (2023)