Cargando…
Entropy SVM–Based Recognition of Transient Surges in HVDC Transmissions
Protection based on transient information is the primary protection of high voltage direct current (HVDC) transmission systems. As a major part of protection function, accurate identification of transient surges is quite crucial to ensure the performance and accuracy of protection algorithms. Recogn...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512939/ https://www.ncbi.nlm.nih.gov/pubmed/33265510 http://dx.doi.org/10.3390/e20060421 |
_version_ | 1783586273013792768 |
---|---|
author | Luo, Guomin Yao, Changyuan Liu, Yinglin Tan, Yingjie He, Jinghan |
author_facet | Luo, Guomin Yao, Changyuan Liu, Yinglin Tan, Yingjie He, Jinghan |
author_sort | Luo, Guomin |
collection | PubMed |
description | Protection based on transient information is the primary protection of high voltage direct current (HVDC) transmission systems. As a major part of protection function, accurate identification of transient surges is quite crucial to ensure the performance and accuracy of protection algorithms. Recognition of transient surges in an HVDC system faces two challenges: signal distortion and small number of samples. Entropy, which is stable in representing frequency distribution features, and support vector machine (SVM), which is good at dealing with samples with limited numbers, are adopted and combined in this paper to solve the transient recognition problems. Three commonly detected transient surges—single-pole-to-ground fault (GF), lightning fault (LF), and lightning disturbance (LD)—are simulated in various scenarios and recognized with the proposed method. The proposed method is proved to be effective in both feature extraction and type classification and shows great potential in protection applications. |
format | Online Article Text |
id | pubmed-7512939 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75129392020-11-09 Entropy SVM–Based Recognition of Transient Surges in HVDC Transmissions Luo, Guomin Yao, Changyuan Liu, Yinglin Tan, Yingjie He, Jinghan Entropy (Basel) Article Protection based on transient information is the primary protection of high voltage direct current (HVDC) transmission systems. As a major part of protection function, accurate identification of transient surges is quite crucial to ensure the performance and accuracy of protection algorithms. Recognition of transient surges in an HVDC system faces two challenges: signal distortion and small number of samples. Entropy, which is stable in representing frequency distribution features, and support vector machine (SVM), which is good at dealing with samples with limited numbers, are adopted and combined in this paper to solve the transient recognition problems. Three commonly detected transient surges—single-pole-to-ground fault (GF), lightning fault (LF), and lightning disturbance (LD)—are simulated in various scenarios and recognized with the proposed method. The proposed method is proved to be effective in both feature extraction and type classification and shows great potential in protection applications. MDPI 2018-05-31 /pmc/articles/PMC7512939/ /pubmed/33265510 http://dx.doi.org/10.3390/e20060421 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Luo, Guomin Yao, Changyuan Liu, Yinglin Tan, Yingjie He, Jinghan Entropy SVM–Based Recognition of Transient Surges in HVDC Transmissions |
title | Entropy SVM–Based Recognition of Transient Surges in HVDC Transmissions |
title_full | Entropy SVM–Based Recognition of Transient Surges in HVDC Transmissions |
title_fullStr | Entropy SVM–Based Recognition of Transient Surges in HVDC Transmissions |
title_full_unstemmed | Entropy SVM–Based Recognition of Transient Surges in HVDC Transmissions |
title_short | Entropy SVM–Based Recognition of Transient Surges in HVDC Transmissions |
title_sort | entropy svm–based recognition of transient surges in hvdc transmissions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512939/ https://www.ncbi.nlm.nih.gov/pubmed/33265510 http://dx.doi.org/10.3390/e20060421 |
work_keys_str_mv | AT luoguomin entropysvmbasedrecognitionoftransientsurgesinhvdctransmissions AT yaochangyuan entropysvmbasedrecognitionoftransientsurgesinhvdctransmissions AT liuyinglin entropysvmbasedrecognitionoftransientsurgesinhvdctransmissions AT tanyingjie entropysvmbasedrecognitionoftransientsurgesinhvdctransmissions AT hejinghan entropysvmbasedrecognitionoftransientsurgesinhvdctransmissions |