Cargando…
Mechanical Fault Diagnosis of High Voltage Circuit Breakers Utilizing EWT-Improved Time Frequency Entropy and Optimal GRNN Classifier
The mechanical fault diagnosis results of the high voltage circuit breakers (HVCBs) are mainly determined by the feature vector and classifier used. In order to obtain more remarkable characteristics of signals and a robust classifier which is suitable for small sample classification, in this paper,...
Autores principales: | Li, Bing, Liu, Mingliang, Guo, Zijian, Ji, Yamin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512966/ https://www.ncbi.nlm.nih.gov/pubmed/33265538 http://dx.doi.org/10.3390/e20060448 |
Ejemplares similares
-
Application of Multiscale Entropy in Mechanical Fault Diagnosis of High Voltage Circuit Breaker
por: Dou, Longjiang, et al.
Publicado: (2018) -
Mechanical Fault Diagnosis of High Voltage Circuit Breakers Based on Variational Mode Decomposition and Multi-Layer Classifier
por: Huang, Nantian, et al.
Publicado: (2016) -
Fault Diagnosis of Medium Voltage Circuit Breakers Based on Vibration Signal Envelope Analysis
por: Wu, Yongbin, et al.
Publicado: (2023) -
Investigation on the fault monitoring of high-voltage circuit breaker using improved deep learning
por: Chen, Hao, et al.
Publicado: (2023) -
Mechanical Fault Diagnosis of a High Voltage Circuit Breaker Based on High-Efficiency Time-Domain Feature Extraction with Entropy Features
por: Qi, Jiajin, et al.
Publicado: (2020)