Cargando…

Non-Quadratic Distances in Model Assessment

One natural way to measure model adequacy is by using statistical distances as loss functions. A related fundamental question is how to construct loss functions that are scientifically and statistically meaningful. In this paper, we investigate non-quadratic distances and their role in assessing the...

Descripción completa

Detalles Bibliográficos
Autores principales: Markatou, Marianthi, Chen, Yang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512982/
https://www.ncbi.nlm.nih.gov/pubmed/33265554
http://dx.doi.org/10.3390/e20060464
Descripción
Sumario:One natural way to measure model adequacy is by using statistical distances as loss functions. A related fundamental question is how to construct loss functions that are scientifically and statistically meaningful. In this paper, we investigate non-quadratic distances and their role in assessing the adequacy of a model and/or ability to perform model selection. We first present the definition of a statistical distance and its associated properties. Three popular distances, total variation, the mixture index of fit and the Kullback-Leibler distance, are studied in detail, with the aim of understanding their properties and potential interpretations that can offer insight into their performance as measures of model misspecification. A small simulation study exemplifies the performance of these measures and their application to different scientific fields is briefly discussed.