Cargando…
Symmetric Logarithmic Derivative of Fermionic Gaussian States
In this article, we derive a closed form expression for the symmetric logarithmic derivative of Fermionic Gaussian states. This provides a direct way of computing the quantum Fisher Information for Fermionic Gaussian states. Applications range from quantum Metrology with thermal states to non-equili...
Autores principales: | Carollo, Angelo, Spagnolo, Bernardo, Valenti, Davide |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513002/ https://www.ncbi.nlm.nih.gov/pubmed/33265575 http://dx.doi.org/10.3390/e20070485 |
Ejemplares similares
-
Uhlmann curvature in dissipative phase transitions
por: Carollo, Angelo, et al.
Publicado: (2018) -
Enhancing Metastability by Dissipation and Driving in an Asymmetric Bistable Quantum System
por: Spagnolo, Bernardo, et al.
Publicado: (2018) -
Supremum of block entanglement for symmetric Gaussian states
por: Kao, Jhih-Yuan, et al.
Publicado: (2018) -
Uhlmann number in translational invariant systems
por: Leonforte, Luca, et al.
Publicado: (2019) -
Solitons in PT-symmetric periodic systems with the logarithmically saturable nonlinearity
por: Zhan, Kaiyun, et al.
Publicado: (2016)