Cargando…
A Moment-Based Maximum Entropy Model for Fitting Higher-Order Interactions in Neural Data
Correlations in neural activity have been demonstrated to have profound consequences for sensory encoding. To understand how neural populations represent stimulus information, it is therefore necessary to model how pairwise and higher-order spiking correlations between neurons contribute to the coll...
Autores principales: | Cayco-Gajic, N. Alex, Zylberberg, Joel, Shea-Brown, Eric |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513015/ https://www.ncbi.nlm.nih.gov/pubmed/33265579 http://dx.doi.org/10.3390/e20070489 |
Ejemplares similares
-
Curvature of dendritic nonlinearities modulates higher-order spiking correlations
por: Cayco-Gajic, Alex, et al.
Publicado: (2015) -
Triplet correlations among similarly tuned cells impact population coding
por: Cayco-Gajic, Natasha A., et al.
Publicado: (2015) -
A Maximum Entropy Test for Evaluating Higher-Order Correlations in Spike Counts
por: Onken, Arno, et al.
Publicado: (2012) -
When does recurrent connectivity improve neural population coding?
por: Zylberberg, Joel, et al.
Publicado: (2014) -
Prediction of spatiotemporal patterns of neural activity using a higher-order Markov representation of instantaneous pairwise maximum entropy model
por: Aghagolzadeh, Mehdi, et al.
Publicado: (2011)