Cargando…
A Spatio-Temporal Entropy-based Framework for the Detection of Trajectories Similarity
The rapid proliferation of sensors and big data repositories offer many new opportunities for data science. Among many application domains, the analysis of large trajectory datasets generated from people’s movements at the city scale is one of the most promising research avenues still to explore. Ex...
Autores principales: | Hosseinpoor Milaghardan, Amin, Ali Abbaspour, Rahim, Claramunt, Christophe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513016/ https://www.ncbi.nlm.nih.gov/pubmed/33265580 http://dx.doi.org/10.3390/e20070490 |
Ejemplares similares
-
On Integrating Size and Shape Distributions into a Spatio-Temporal Information Entropy Framework
por: Leibovici, Didier G., et al.
Publicado: (2019) -
Spatio-Temporal Distribution Characteristics and Trajectory Similarity Analysis of Tuberculosis in Beijing, China
por: Li, Lan, et al.
Publicado: (2016) -
A Ship Trajectory Prediction Framework Based on a Recurrent Neural Network
por: Suo, Yongfeng, et al.
Publicado: (2020) -
An Efficient Extended Targets Detection Framework Based on Sampling and Spatio-Temporal Detection
por: Yan, Bo, et al.
Publicado: (2019) -
A trajectory data compression algorithm based on spatio-temporal characteristics
por: Zhong, Yanling, et al.
Publicado: (2022)