Cargando…
Conditional Gaussian Systems for Multiscale Nonlinear Stochastic Systems: Prediction, State Estimation and Uncertainty Quantification
A conditional Gaussian framework for understanding and predicting complex multiscale nonlinear stochastic systems is developed. Despite the conditional Gaussianity, such systems are nevertheless highly nonlinear and are able to capture the non-Gaussian features of nature. The special structure of th...
Autores principales: | Chen, Nan, Majda, Andrew J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513031/ https://www.ncbi.nlm.nih.gov/pubmed/33265599 http://dx.doi.org/10.3390/e20070509 |
Ejemplares similares
-
Information theory and stochastics for multiscale nonlinear systems
por: Majda, Andrew J, et al.
Publicado: (2005) -
Model Error, Information Barriers, State Estimation and Prediction in Complex Multiscale Systems
por: Majda, Andrew J., et al.
Publicado: (2018) -
Stochastic Systems: Uncertainty Quantification and Propagation
por: Grigoriu, Mircea
Publicado: (2012) -
Uncertainty quantification patterns for multiscale models
por: Ye, D., et al.
Publicado: (2021) -
Multisensor Estimation Fusion with Gaussian Process for Nonlinear Dynamic Systems
por: Liao, Yiwei, et al.
Publicado: (2019)