Cargando…
Generalized Grey Target Decision Method for Mixed Attributes Based on Kullback-Leibler Distance
A novel generalized grey target decision method for mixed attributes based on Kullback-Leibler (K-L) distance is proposed. The proposed approach involves the following steps: first, all indices are converted into index binary connection number vectors; second, the two-tuple (determinacy, uncertainty...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513048/ https://www.ncbi.nlm.nih.gov/pubmed/33265612 http://dx.doi.org/10.3390/e20070523 |
Sumario: | A novel generalized grey target decision method for mixed attributes based on Kullback-Leibler (K-L) distance is proposed. The proposed approach involves the following steps: first, all indices are converted into index binary connection number vectors; second, the two-tuple (determinacy, uncertainty) numbers originated from index binary connection number vectors are obtained; third, the positive and negative target centers of two-tuple (determinacy, uncertainty) numbers are calculated; then the K-L distances of all alternatives to their positive and negative target centers are integrated by the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) method; the final decision is based on the integrated value on a bigger the better basis. A case study exemplifies the proposed approach. |
---|