Cargando…

Curvature Invariants of Statistical Submanifolds in Kenmotsu Statistical Manifolds of Constant ϕ-Sectional Curvature

In this article, we consider statistical submanifolds of Kenmotsu statistical manifolds of constant [Formula: see text]-sectional curvature. For such submanifold, we investigate curvature properties. We establish some inequalities involving the normalized [Formula: see text]-Casorati curvatures (ext...

Descripción completa

Detalles Bibliográficos
Autores principales: Decu, Simona, Haesen, Stefan, Verstraelen, Leopold, Vîlcu, Gabriel-Eduard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513053/
https://www.ncbi.nlm.nih.gov/pubmed/33265618
http://dx.doi.org/10.3390/e20070529
Descripción
Sumario:In this article, we consider statistical submanifolds of Kenmotsu statistical manifolds of constant [Formula: see text]-sectional curvature. For such submanifold, we investigate curvature properties. We establish some inequalities involving the normalized [Formula: see text]-Casorati curvatures (extrinsic invariants) and the scalar curvature (intrinsic invariant). Moreover, we prove that the equality cases of the inequalities hold if and only if the imbedding curvature tensors h and [Formula: see text] of the submanifold (associated with the dual connections) satisfy [Formula: see text] , i.e., the submanifold is totally geodesic with respect to the Levi–Civita connection.