Cargando…
Entropy-Based Feature Extraction for Electromagnetic Discharges Classification in High-Voltage Power Generation
This work exploits four entropy measures known as Sample, Permutation, Weighted Permutation, and Dispersion Entropy to extract relevant information from Electromagnetic Interference (EMI) discharge signals that are useful in fault diagnosis of High-Voltage (HV) equipment. Multi-class classification...
Autores principales: | Mitiche, Imene, Morison, Gordon, Nesbitt, Alan, Stewart, Brian G., Boreham, Philip |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513074/ https://www.ncbi.nlm.nih.gov/pubmed/33265638 http://dx.doi.org/10.3390/e20080549 |
Ejemplares similares
-
Classification of Partial Discharge Signals by Combining Adaptive Local Iterative Filtering and Entropy Features
por: Mitiche, Imene, et al.
Publicado: (2018) -
Imaging Time Series for the Classification of EMI Discharge Sources
por: Mitiche, Imene, et al.
Publicado: (2018) -
Data-Driven Anomaly Detection in High-Voltage Transformer Bushings with LSTM Auto-Encoder
por: Mitiche, Imene, et al.
Publicado: (2021) -
Dynamic Noise Reduction with Deep Residual Shrinkage Networks for Online Fault Classification
por: Salimy, Alireza, et al.
Publicado: (2022) -
Enhanced Partial Discharge Signal Denoising Using Dispersion Entropy Optimized Variational Mode Decomposition
por: Dhandapani, Ragavesh, et al.
Publicado: (2021)