Cargando…
Multivariate Multiscale Complexity Analysis of Self-Reproducing Chaotic Systems
Designing a chaotic system with infinitely many attractors is a hot topic. In this paper, multiscale multivariate permutation entropy (MMPE) and multiscale multivariate Lempel–Ziv complexity (MMLZC) are employed to analyze the complexity of those self-reproducing chaotic systems with one-directional...
Autores principales: | He, Shaobo, Li, Chunbiao, Sun, Kehui, Jafari, Sajad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513081/ https://www.ncbi.nlm.nih.gov/pubmed/33265645 http://dx.doi.org/10.3390/e20080556 |
Ejemplares similares
-
Complex Chaotic Attractor via Fractal Transformation
por: Dai, Shengqiu, et al.
Publicado: (2019) -
Parameter Identification of Fractional-Order Discrete Chaotic Systems
por: Peng, Yuexi, et al.
Publicado: (2019) -
A New Chaotic System with a Self-Excited Attractor: Entropy Measurement, Signal Encryption, and Parameter Estimation
por: Xu, Guanghui, et al.
Publicado: (2018) -
Design of a Network Permutation Entropy and Its Applications for Chaotic Time Series and EEG Signals
por: Yan, Bo, et al.
Publicado: (2019) -
A Modified Multivariable Complexity Measure Algorithm and Its Application for Identifying Mental Arithmetic Task
por: Ma, Dizhen, et al.
Publicado: (2021)