Cargando…
Ensemble Estimation of Information Divergence †
Recent work has focused on the problem of nonparametric estimation of information divergence functionals between two continuous random variables. Many existing approaches require either restrictive assumptions about the density support set or difficult calculations at the support set boundary which...
Autores principales: | Moon, Kevin R., Sricharan, Kumar, Greenewald, Kristjan, Hero, Alfred O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513085/ https://www.ncbi.nlm.nih.gov/pubmed/33265649 http://dx.doi.org/10.3390/e20080560 |
Ejemplares similares
-
Penalized ensemble Kalman filters for high dimensional non-linear systems
por: Hou, Elizabeth, et al.
Publicado: (2021) -
Convergence Rates for Empirical Estimation of Binary Classification Bounds
por: Sekeh, Salimeh Yasaei, et al.
Publicado: (2019) -
Geometric Estimation of Multivariate Dependency
por: Yasaei Sekeh, Salimeh, et al.
Publicado: (2019) -
Exponential Strong Converse for Successive Refinement with Causal Decoder Side Information †
por: Zhou, Lin, et al.
Publicado: (2019) -
Robust Covariance Estimators Based on Information Divergences and Riemannian Manifold
por: Hua, Xiaoqiang, et al.
Publicado: (2018)