Cargando…

Spherical Minimum Description Length

We consider the problem of model selection using the Minimum Description Length (MDL) criterion for distributions with parameters on the hypersphere. Model selection algorithms aim to find a compromise between goodness of fit and model complexity. Variables often considered for complexity penalties...

Descripción completa

Detalles Bibliográficos
Autores principales: Herntier, Trevor, Ihou, Koffi Eddy, Smith, Anthony, Rangarajan, Anand, Peter, Adrian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513099/
https://www.ncbi.nlm.nih.gov/pubmed/33265664
http://dx.doi.org/10.3390/e20080575
Descripción
Sumario:We consider the problem of model selection using the Minimum Description Length (MDL) criterion for distributions with parameters on the hypersphere. Model selection algorithms aim to find a compromise between goodness of fit and model complexity. Variables often considered for complexity penalties involve number of parameters, sample size and shape of the parameter space, with the penalty term often referred to as stochastic complexity. Current model selection criteria either ignore the shape of the parameter space or incorrectly penalize the complexity of the model, largely because typical Laplace approximation techniques yield inaccurate results for curved spaces. We demonstrate how the use of a constrained Laplace approximation on the hypersphere yields a novel complexity measure that more accurately reflects the geometry of these spherical parameters spaces. We refer to this modified model selection criterion as spherical MDL. As proof of concept, spherical MDL is used for bin selection in histogram density estimation, performing favorably against other model selection criteria.