Cargando…
A Maximum-Entropy Method to Estimate Discrete Distributions from Samples Ensuring Nonzero Probabilities
When constructing discrete (binned) distributions from samples of a data set, applications exist where it is desirable to assure that all bins of the sample distribution have nonzero probability. For example, if the sample distribution is part of a predictive model for which we require returning a r...
Autores principales: | Darscheid, Paul, Guthke, Anneli, Ehret, Uwe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513126/ https://www.ncbi.nlm.nih.gov/pubmed/33265690 http://dx.doi.org/10.3390/e20080601 |
Ejemplares similares
-
The principle of maximum entropy and the probability-weighted moments for estimating the parameters of the Kumaraswamy distribution
por: Helu, Amal
Publicado: (2022) -
Maximum Entropy Estimation of Probability Distribution of Variables in Higher Dimensions from Lower Dimensional Data
por: Das, Jayajit, et al.
Publicado: (2015) -
Distributed estimation and joint probabilities estimation by entropy model
por: Fassinut-Mombot, B, et al.
Publicado: (2001) -
Quantum nonlocality without entanglement depending on nonzero prior probabilities in optimal unambiguous discrimination
por: Ha, Donghoon, et al.
Publicado: (2021) -
Quantum Contextual Advantage Depending on Nonzero Prior Probabilities in State Discrimination of Mixed Qubit States
por: Shin, Jaehee, et al.
Publicado: (2021)