Cargando…
Time-Shift Multiscale Fuzzy Entropy and Laplacian Support Vector Machine Based Rolling Bearing Fault Diagnosis
Multiscale entropy (MSE), as a complexity measurement method of time series, has been widely used to extract the fault information hidden in machinery vibration signals. However, the insufficient coarse graining in MSE will result in fault pattern information missing and the sample entropy used in M...
Autores principales: | Zhu, Xiaolong, Zheng, Jinde, Pan, Haiyang, Bao, Jiahan, Zhang, Yifang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513127/ https://www.ncbi.nlm.nih.gov/pubmed/33265691 http://dx.doi.org/10.3390/e20080602 |
Ejemplares similares
-
Composite Interpolation-Based Multiscale Fuzzy Entropy and Its Application to Fault Diagnosis of Rolling Bearing
por: Liu, Qingyun, et al.
Publicado: (2019) -
Composite Multivariate Multi-Scale Permutation Entropy and Laplacian Score Based Fault Diagnosis of Rolling Bearing
por: Ying, Wanming, et al.
Publicado: (2022) -
Multiscale Distribution Entropy and t-Distributed Stochastic Neighbor Embedding-Based Fault Diagnosis of Rolling Bearings
por: Tu, Deyu, et al.
Publicado: (2018) -
Use of Composite Multivariate Multiscale Permutation Fuzzy Entropy to Diagnose the Faults of Rolling Bearing
por: Yuan, Qiang, et al.
Publicado: (2023) -
Time-Shift Multi-scale Weighted Permutation Entropy and GWO-SVM Based Fault Diagnosis Approach for Rolling Bearing
por: Dong, Zhilin, et al.
Publicado: (2019)