Cargando…
A Decomposition Method for Global Evaluation of Shannon Entropy and Local Estimations of Algorithmic Complexity
We investigate the properties of a Block Decomposition Method (BDM), which extends the power of a Coding Theorem Method (CTM) that approximates local estimations of algorithmic complexity based on Solomonoff–Levin’s theory of algorithmic probability providing a closer connection to algorithmic compl...
Autores principales: | Zenil, Hector, Hernández-Orozco, Santiago, Kiani, Narsis A., Soler-Toscano, Fernando, Rueda-Toicen, Antonio, Tegnér, Jesper |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513128/ https://www.ncbi.nlm.nih.gov/pubmed/33265694 http://dx.doi.org/10.3390/e20080605 |
Ejemplares similares
-
The Thermodynamics of Network Coding, and an Algorithmic Refinement of the Principle of Maximum Entropy †
por: Zenil, Hector, et al.
Publicado: (2019) -
Symmetry and Correspondence of Algorithmic Complexity over Geometric, Spatial and Topological Representations †
por: Zenil, Hector, et al.
Publicado: (2018) -
A Review of Graph and Network Complexity from an Algorithmic Information Perspective
por: Zenil, Hector, et al.
Publicado: (2018) -
Algorithmic Probability-Guided Machine Learning on Non-Differentiable Spaces
por: Hernández-Orozco, Santiago, et al.
Publicado: (2021) -
Algorithmically probable mutations reproduce aspects of evolution, such as convergence rate, genetic memory and modularity
por: Hernández-Orozco, Santiago, et al.
Publicado: (2018)