Cargando…

Information Geometry of Randomized Quantum State Tomography

Suppose that a d-dimensional Hilbert space [Formula: see text] admits a full set of mutually unbiased bases [Formula: see text] , where [Formula: see text]. A randomized quantum state tomography is a scheme for estimating an unknown quantum state on [Formula: see text] through iterative applications...

Descripción completa

Detalles Bibliográficos
Autores principales: Fujiwara, Akio, Yamagata, Koichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513134/
https://www.ncbi.nlm.nih.gov/pubmed/33265698
http://dx.doi.org/10.3390/e20080609
_version_ 1783586318218952704
author Fujiwara, Akio
Yamagata, Koichi
author_facet Fujiwara, Akio
Yamagata, Koichi
author_sort Fujiwara, Akio
collection PubMed
description Suppose that a d-dimensional Hilbert space [Formula: see text] admits a full set of mutually unbiased bases [Formula: see text] , where [Formula: see text]. A randomized quantum state tomography is a scheme for estimating an unknown quantum state on [Formula: see text] through iterative applications of measurements [Formula: see text] for [Formula: see text] , where the numbers of applications of these measurements are random variables. We show that the space of the resulting probability distributions enjoys a mutually orthogonal dualistic foliation structure, which provides us with a simple geometrical insight into the maximum likelihood method for the quantum state tomography.
format Online
Article
Text
id pubmed-7513134
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-75131342020-11-09 Information Geometry of Randomized Quantum State Tomography Fujiwara, Akio Yamagata, Koichi Entropy (Basel) Article Suppose that a d-dimensional Hilbert space [Formula: see text] admits a full set of mutually unbiased bases [Formula: see text] , where [Formula: see text]. A randomized quantum state tomography is a scheme for estimating an unknown quantum state on [Formula: see text] through iterative applications of measurements [Formula: see text] for [Formula: see text] , where the numbers of applications of these measurements are random variables. We show that the space of the resulting probability distributions enjoys a mutually orthogonal dualistic foliation structure, which provides us with a simple geometrical insight into the maximum likelihood method for the quantum state tomography. MDPI 2018-08-16 /pmc/articles/PMC7513134/ /pubmed/33265698 http://dx.doi.org/10.3390/e20080609 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Fujiwara, Akio
Yamagata, Koichi
Information Geometry of Randomized Quantum State Tomography
title Information Geometry of Randomized Quantum State Tomography
title_full Information Geometry of Randomized Quantum State Tomography
title_fullStr Information Geometry of Randomized Quantum State Tomography
title_full_unstemmed Information Geometry of Randomized Quantum State Tomography
title_short Information Geometry of Randomized Quantum State Tomography
title_sort information geometry of randomized quantum state tomography
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513134/
https://www.ncbi.nlm.nih.gov/pubmed/33265698
http://dx.doi.org/10.3390/e20080609
work_keys_str_mv AT fujiwaraakio informationgeometryofrandomizedquantumstatetomography
AT yamagatakoichi informationgeometryofrandomizedquantumstatetomography