Cargando…
A Hybrid Structure Learning Algorithm for Bayesian Network Using Experts’ Knowledge
Bayesian network structure learning from data has been proved to be a NP-hard (Non-deterministic Polynomial-hard) problem. An effective method of improving the accuracy of Bayesian network structure is using experts’ knowledge instead of only using data. Some experts’ knowledge (named here explicit...
Autores principales: | Li, Hongru, Guo, Huiping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513154/ https://www.ncbi.nlm.nih.gov/pubmed/33265709 http://dx.doi.org/10.3390/e20080620 |
Ejemplares similares
-
Integrating Expert Knowledge with Data in Bayesian Networks: Preserving Data-Driven Expectations when the Expert Variables Remain Unobserved
por: Constantinou, Anthony Costa, et al.
Publicado: (2016) -
NML Computation Algorithms for Tree-Structured Multinomial Bayesian Networks
por: Kontkanen, Petri, et al.
Publicado: (2008) -
Bayesian network model structure based on binary evolutionary algorithm
por: Yao, Yongna
Publicado: (2023) -
Hybrid neural network and expert systems
por: Medsker, Larry R
Publicado: (1994) -
Using a conceptual framework during learning attenuates the loss of expert-type knowledge structure
por: Novak, Kerry, et al.
Publicado: (2006)