Cargando…

On the Use of Transfer Entropy to Investigate the Time Horizon of Causal Influences between Signals

Understanding the details of the correlation between time series is an essential step on the route to assessing the causal relation between systems. Traditional statistical indicators, such as the Pearson correlation coefficient and the mutual information, have some significant limitations. More rec...

Descripción completa

Detalles Bibliográficos
Autores principales: Murari, Andrea, Lungaroni, Michele, Peluso, Emmanuele, Gaudio, Pasquale, Lerche, Ernesto, Garzotti, Luca, Gelfusa, Michela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513156/
https://www.ncbi.nlm.nih.gov/pubmed/33265716
http://dx.doi.org/10.3390/e20090627
Descripción
Sumario:Understanding the details of the correlation between time series is an essential step on the route to assessing the causal relation between systems. Traditional statistical indicators, such as the Pearson correlation coefficient and the mutual information, have some significant limitations. More recently, transfer entropy has been proposed as a powerful tool to understand the flow of information between signals. In this paper, the comparative advantages of transfer entropy, for determining the time horizon of causal influence, are illustrated with the help of synthetic data. The technique has been specifically revised for the analysis of synchronization experiments. The investigation of experimental data from thermonuclear plasma diagnostics proves the potential and limitations of the developed approach.