Cargando…
Convex Optimization via Symmetrical Hölder Divergence for a WLAN Indoor Positioning System
Modern indoor positioning system services are important technologies that play vital roles in modern life, providing many services such as recruiting emergency healthcare providers and for security purposes. Several large companies, such as Microsoft, Apple, Nokia, and Google, have researched locati...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513163/ https://www.ncbi.nlm.nih.gov/pubmed/33265728 http://dx.doi.org/10.3390/e20090639 |
Sumario: | Modern indoor positioning system services are important technologies that play vital roles in modern life, providing many services such as recruiting emergency healthcare providers and for security purposes. Several large companies, such as Microsoft, Apple, Nokia, and Google, have researched location-based services. Wireless indoor localization is key for pervasive computing applications and network optimization. Different approaches have been developed for this technique using WiFi signals. WiFi fingerprinting-based indoor localization has been widely used due to its simplicity, and algorithms that fingerprint WiFi signals at separate locations can achieve accuracy within a few meters. However, a major drawback of WiFi fingerprinting is the variance in received signal strength (RSS), as it fluctuates with time and changing environment. As the signal changes, so does the fingerprint database, which can change the distribution of the RSS (multimodal distribution). Thus, in this paper, we propose that symmetrical Hölder divergence, which is a statistical model of entropy that encapsulates both the skew Bhattacharyya divergence and Cauchy–Schwarz divergence that are closed-form formulas that can be used to measure the statistical dissimilarities between the same exponential family for the signals that have multivariate distributions. The Hölder divergence is asymmetric, so we used both left-sided and right-sided data so the centroid can be symmetrized to obtain the minimizer of the proposed algorithm. The experimental results showed that the symmetrized Hölder divergence consistently outperformed the traditional k nearest neighbor and probability neural network. In addition, with the proposed algorithm, the position error accuracy was about 1 m in buildings. |
---|