Cargando…
On the Geodesic Distance in Shapes K-means Clustering
In this paper, the problem of clustering rotationally invariant shapes is studied and a solution using Information Geometry tools is provided. Landmarks of a complex shape are defined as probability densities in a statistical manifold. Then, in the setting of shapes clustering through a K-means algo...
Autores principales: | Gattone, Stefano Antonio, De Sanctis, Angela, Puechmorel, Stéphane, Nicol, Florence |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513169/ https://www.ncbi.nlm.nih.gov/pubmed/33265736 http://dx.doi.org/10.3390/e20090647 |
Ejemplares similares
-
Fine Properties of Geodesics and Geodesic [Formula: see text] -Convexity for the Hellinger–Kantorovich Distance
por: Liero, Matthias, et al.
Publicado: (2023) -
k-means Cluster Shape Implications
por: Kłopotek, Mieczysław A., et al.
Publicado: (2020) -
Cryo-electron microscope image denoising based on the geodesic distance
por: Ouyang, Jianquan, et al.
Publicado: (2018) -
Robust Diffeomorphic Mapping via Geodesically Controlled Active Shapes
por: Tward, Daniel J., et al.
Publicado: (2013) -
The geometry of geodesics /
por: Busemann, Herbert, 1905-1994
Publicado: (1955)