Cargando…
A Forecasting Model Based on High-Order Fluctuation Trends and Information Entropy
Most existing high-order prediction models abstract logical rules that are based on historical discrete states without considering historical inconsistency and fluctuation trends. In fact, these two characteristics are important for describing historical fluctuations. This paper proposes a model bas...
Autores principales: | Guan, Hongjun, Dai, Zongli, Guan, Shuang, Zhao, Aiwu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513192/ https://www.ncbi.nlm.nih.gov/pubmed/33265758 http://dx.doi.org/10.3390/e20090669 |
Ejemplares similares
-
A Neutrosophic Forecasting Model for Time Series Based on First-Order State and Information Entropy of High-Order Fluctuation
por: Guan, Hongjun, et al.
Publicado: (2019) -
A novel stock forecasting model based on High-order-fuzzy-fluctuation Trends and Back Propagation Neural Network
por: Guan, Hongjun, et al.
Publicado: (2018) -
Entropy, Information, and Symmetry: Ordered is Symmetrical
por: Bormashenko, Edward
Publicado: (2019) -
Entropy Application for Forecasting
por: López-Menéndez, Ana Jesús, et al.
Publicado: (2020) -
Amplitude- and Fluctuation-Based Dispersion Entropy
por: Azami, Hamed, et al.
Publicado: (2018)