Cargando…

Constructal Optimization for Cooling a Non-Uniform Heat Generating Radial-Pattern Disc by Conduction

A heat conduction model in a radial-pattern disc by considering non-uniform heat generation (NUHG) is established in this paper. A series of high conductivity channels (HCCs) are attached on the rim of the disc and extended to its center. Constructal optimizations of the discs with constant and vari...

Descripción completa

Detalles Bibliográficos
Autores principales: You, Jiang, Feng, Huijun, Chen, Lingen, Xie, Zhihui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513210/
https://www.ncbi.nlm.nih.gov/pubmed/33265774
http://dx.doi.org/10.3390/e20090685
Descripción
Sumario:A heat conduction model in a radial-pattern disc by considering non-uniform heat generation (NUHG) is established in this paper. A series of high conductivity channels (HCCs) are attached on the rim of the disc and extended to its center. Constructal optimizations of the discs with constant and variable cross-sectional HCCs are carried out, respectively, and their maximum temperature differences (MTDs) are minimized based on analytical method and finite element method. Besides, the influences of the NUHG coefficient, HCC number and width coefficient on the optimal results are studied. The results indicate that the deviation of the optimal constructs obtained from the analytical method and finite element method are comparatively slight. When the NUHG coefficient is equal to 10, the minimum MTD of the disc with 25 constant cross-sectional HCCs is specifically reduced by 48.8% compared to that with 10 HCCs. As a result, the heat conduction performance (HCP) of the disc can be efficiently improved by properly increasing the number of HCCs. The minimum MTD of the disc with variable cross-sectional HCC is decreased by 15.0% when the width coefficient is changed from 1 to 4. Therefore, the geometry of variable cross-sectional HCC can be applied in the constructal design of the disc to a better heat transfer performance. The constructal results obtained by investigating the non-uniform heat generating case in this paper can contribute to the design of practical electronic device to a better heat transfer performance.