Cargando…

Information Geometric Approach on Most Informative Boolean Function Conjecture

Let [Formula: see text] be a memoryless uniform Bernoulli source and [Formula: see text] be the output of it through a binary symmetric channel. Courtade and Kumar conjectured that the Boolean function [Formula: see text] that maximizes the mutual information [Formula: see text] is a dictator functi...

Descripción completa

Detalles Bibliográficos
Autor principal: No, Albert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513214/
https://www.ncbi.nlm.nih.gov/pubmed/33265777
http://dx.doi.org/10.3390/e20090688
_version_ 1783586336397066240
author No, Albert
author_facet No, Albert
author_sort No, Albert
collection PubMed
description Let [Formula: see text] be a memoryless uniform Bernoulli source and [Formula: see text] be the output of it through a binary symmetric channel. Courtade and Kumar conjectured that the Boolean function [Formula: see text] that maximizes the mutual information [Formula: see text] is a dictator function, i.e., [Formula: see text] for some i. We propose a clustering problem, which is equivalent to the above problem where we emphasize an information geometry aspect of the equivalent problem. Moreover, we define a normalized geometric mean of measures and interesting properties of it. We also show that the conjecture is true when the arithmetic and geometric mean coincide in a specific set of measures.
format Online
Article
Text
id pubmed-7513214
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-75132142020-11-09 Information Geometric Approach on Most Informative Boolean Function Conjecture No, Albert Entropy (Basel) Article Let [Formula: see text] be a memoryless uniform Bernoulli source and [Formula: see text] be the output of it through a binary symmetric channel. Courtade and Kumar conjectured that the Boolean function [Formula: see text] that maximizes the mutual information [Formula: see text] is a dictator function, i.e., [Formula: see text] for some i. We propose a clustering problem, which is equivalent to the above problem where we emphasize an information geometry aspect of the equivalent problem. Moreover, we define a normalized geometric mean of measures and interesting properties of it. We also show that the conjecture is true when the arithmetic and geometric mean coincide in a specific set of measures. MDPI 2018-09-10 /pmc/articles/PMC7513214/ /pubmed/33265777 http://dx.doi.org/10.3390/e20090688 Text en © 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
No, Albert
Information Geometric Approach on Most Informative Boolean Function Conjecture
title Information Geometric Approach on Most Informative Boolean Function Conjecture
title_full Information Geometric Approach on Most Informative Boolean Function Conjecture
title_fullStr Information Geometric Approach on Most Informative Boolean Function Conjecture
title_full_unstemmed Information Geometric Approach on Most Informative Boolean Function Conjecture
title_short Information Geometric Approach on Most Informative Boolean Function Conjecture
title_sort information geometric approach on most informative boolean function conjecture
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513214/
https://www.ncbi.nlm.nih.gov/pubmed/33265777
http://dx.doi.org/10.3390/e20090688
work_keys_str_mv AT noalbert informationgeometricapproachonmostinformativebooleanfunctionconjecture