Cargando…
Research on Recognition Method of Driving Fatigue State Based on Sample Entropy and Kernel Principal Component Analysis
In view of the nonlinear characteristics of electroencephalography (EEG) signals collected in the driving fatigue state recognition research and the issue that the recognition accuracy of the driving fatigue state recognition method based on EEG is still unsatisfactory, this paper proposes a driving...
Autores principales: | Ye, Beige, Qiu, Taorong, Bai, Xiaoming, Liu, Ping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513215/ https://www.ncbi.nlm.nih.gov/pubmed/33265790 http://dx.doi.org/10.3390/e20090701 |
Ejemplares similares
-
Construction and Application of Functional Brain Network Based on Entropy
por: Zhang, Lingyun, et al.
Publicado: (2020) -
Towards Multiple Kernel Principal Component Analysis for Integrative Analysis of Tumor Samples
por: Speicher, Nora K., et al.
Publicado: (2017) -
A New Feature Analysis Approach to Selecting Channels of EEG for Fatigue Driving
por: Liao, Yiqi, et al.
Publicado: (2022) -
Gene Expression Data Classification With Kernel
Principal Component Analysis
por: Liu, Zhenqiu, et al.
Publicado: (2005) -
Kernel Principal Component Analysis of Coil Compression in Parallel Imaging
por: Chang, Yuchou, et al.
Publicado: (2018)