Cargando…
Probabilistic Inference for Dynamical Systems
A general framework for inference in dynamical systems is described, based on the language of Bayesian probability theory and making use of the maximum entropy principle. Taking the concept of a path as fundamental, the continuity equation and Cauchy’s equation for fluid dynamics arise naturally, wh...
Autores principales: | Davis, Sergio, González, Diego, Gutiérrez, Gonzalo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513225/ https://www.ncbi.nlm.nih.gov/pubmed/33265785 http://dx.doi.org/10.3390/e20090696 |
Ejemplares similares
-
Probabilistic inference of synaptic dynamics in neocortical microcircuits
por: Costa, Rui P, et al.
Publicado: (2013) -
Probabilistic reasoning in intelligent systems: networks of plausible inference
por: Pearl, Judea
Publicado: (1988) -
Direct Inference and Probabilistic Accounts of Induction
por: Williamson, Jon
Publicado: (2022) -
Probabilistic Inference with Polymerizing Biochemical Circuits
por: Katz, Yarden, et al.
Publicado: (2022) -
Probabilistic Phylogenetic Inference with Insertions and Deletions
por: Rivas, Elena, et al.
Publicado: (2008)