Cargando…
Publisher Correction to: Deep learning-based image analysis methods for brightfield-acquired multiplex immunohistochemistry images
Autores principales: | Fassler, Danielle J., Abousamra, Shahira, Gupta, Rajarsi, Chen, Chao, Zhao, Maozheng, Paredes, David, Batool, Syeda Areeha, Knudsen, Beatrice S., Escobar-Hoyos, Luisa, Shroyer, Kenneth R., Samaras, Dimitris, Kurc, Tahsin, Saltz, Joel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513292/ https://www.ncbi.nlm.nih.gov/pubmed/32972449 http://dx.doi.org/10.1186/s13000-020-01021-y |
Ejemplares similares
-
Deep learning-based image analysis methods for brightfield-acquired multiplex immunohistochemistry images
por: Fassler, Danielle J., et al.
Publicado: (2020) -
Deep Learning-Based Mapping of Tumor Infiltrating Lymphocytes in Whole Slide Images of 23 Types of Cancer
por: Abousamra, Shahira, et al.
Publicado: (2022) -
Brightfield multiplex immunohistochemistry with multispectral imaging
por: Morrison, Larry E., et al.
Publicado: (2020) -
Dataset of segmented nuclei in hematoxylin and eosin stained histopathology images of ten cancer types
por: Hou, Le, et al.
Publicado: (2020) -
Comparison of Different Classifiers with Active Learning to Support Quality Control in Nucleus Segmentation in Pathology Images
por: Wen, Si, et al.
Publicado: (2018)