Cargando…

Soft Heteroleptic N-Heterocyclic Carbene Palladium(II) Species for Efficient Catalytic Routes to Alkynones via Carbonylative Sonogashira Coupling

[Image: see text] N,N′-Substituted di-isopropyl (NHC-1), benzyl-isopropyl (NHC-2), and adamantyl-isopropyl (NHC-3) benzimidazolium salts react with palladium(II) bromide in pyridine to afford the corresponding trans-dibromidopyridinepalladium(II) complexes Pd-C1, Pd-C2, and Pd-C3 in high yields. A d...

Descripción completa

Detalles Bibliográficos
Autores principales: Mansour, Waseem, Suleiman, Rami, Fettouhi, Mohammed, El Ali, Bassam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513372/
https://www.ncbi.nlm.nih.gov/pubmed/32984688
http://dx.doi.org/10.1021/acsomega.0c02413
Descripción
Sumario:[Image: see text] N,N′-Substituted di-isopropyl (NHC-1), benzyl-isopropyl (NHC-2), and adamantyl-isopropyl (NHC-3) benzimidazolium salts react with palladium(II) bromide in pyridine to afford the corresponding trans-dibromidopyridinepalladium(II) complexes Pd-C1, Pd-C2, and Pd-C3 in high yields. A distorted square planar geometry for Pd-C2 and Pd-C3 was confirmed by single-crystal X-ray diffraction. The palladium(II) complexes show a remarkably higher catalytic activity and selectivity, compared to the literature data, in carbonylative Sonogashira coupling reactions of aryl iodides and aryl diiodides with aryl alkynes, alkyl alkynes, and dialkynes. Excellent yields with as low as 0.03 mol % loading of the catalyst were obtained. In the series of benzimidazolium (NHC) precursors, the (1)H NMR signals of the α hydrogen show a consistent probing of the N-substituent donor strength. The density functional theory (DFT) quantum mechanical descriptors of the frontier orbitals were calculated. A linear correlation of the calculated absolute softness of the complexes versus the calculated percent buried volume (%V(bur)) of their corresponding ligands was obtained. The catalytic activity experimental data are consistent with the hard soft acid base (HSAB)-predicted high affinity of the softest Pd-C3 complex for soft substrates, such as aryl iodides.