Cargando…
Action of a minimal contractile bactericidal nanomachine
R-type bacteriocins are minimal contractile nanomachines that hold promise as precision antibiotics(1–4). Each bactericidal complex uses a collar to bridge a hollow tube with a contractile sheath loaded in a metastable state by a baseplate scaffold(1,2). Fine-tuning of such nucleic acid-free protein...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513463/ https://www.ncbi.nlm.nih.gov/pubmed/32350467 http://dx.doi.org/10.1038/s41586-020-2186-z |
Sumario: | R-type bacteriocins are minimal contractile nanomachines that hold promise as precision antibiotics(1–4). Each bactericidal complex uses a collar to bridge a hollow tube with a contractile sheath loaded in a metastable state by a baseplate scaffold(1,2). Fine-tuning of such nucleic acid-free protein machines for precision medicine calls for an atomic description of the entire complex and contraction mechanism, which is not available from baseplate structures of (DNA-containing) T4 bacteriophage5. Here we report the atomic model of the complete R2 pyocin in its pre- and post-contraction states, each containing 384 subunits of 11 unique atomic models of 10 gene products. Comparison of these structures suggests the sequence of events during pyocin contraction: tail fibers trigger lateral dissociation of baseplate triplexes; the dissociation then initiates a cascade of events leading to sheath contraction; this contraction converts chemical energy into mechanical force to drive the iron-tipped tube across the bacterial cell surface, killing the bacterium. |
---|