Cargando…
Deposition of Ion-Conductive Membranes from Ionic Liquids via Initiated Chemical Vapor Deposition
[Image: see text] In this study, liquid droplets of 1-allyl-3-methylimidazolium dicyanamide have been processed by initiated chemical vapor deposition (iCVD) with a cross-linked polymer film consisting of (hydroxyethyl)methacrylate and ethylene glycol dimethacrylate to develop free-standing, ion-con...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513469/ https://www.ncbi.nlm.nih.gov/pubmed/32981970 http://dx.doi.org/10.1021/acs.macromol.0c01258 |
_version_ | 1783586390840180736 |
---|---|
author | Kräuter, Marianne Tazreiter, Martin Perrotta, Alberto Coclite, Anna Maria |
author_facet | Kräuter, Marianne Tazreiter, Martin Perrotta, Alberto Coclite, Anna Maria |
author_sort | Kräuter, Marianne |
collection | PubMed |
description | [Image: see text] In this study, liquid droplets of 1-allyl-3-methylimidazolium dicyanamide have been processed by initiated chemical vapor deposition (iCVD) with a cross-linked polymer film consisting of (hydroxyethyl)methacrylate and ethylene glycol dimethacrylate to develop free-standing, ion-conductive membranes. We found that the obtained films are solids and have a conductivity of up to 18 ± 6 mS/cm, associated with the negatively charged counterion, indicating no loss of conductivity, compared to the ionic liquid in the liquid state. The membranes were conductive within a large process window and in air, thanks to the fact that the iCVD process does not affect the mobility of the anion in the ionic liquid. Furthermore, we demonstrate that varying the deposition conditions can influence the homogeneity and conductivity of the resulting membranes. The promising results of this study represent an important stepping stone on the way to novel ion-conductive membranes. |
format | Online Article Text |
id | pubmed-7513469 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American
Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-75134692020-09-25 Deposition of Ion-Conductive Membranes from Ionic Liquids via Initiated Chemical Vapor Deposition Kräuter, Marianne Tazreiter, Martin Perrotta, Alberto Coclite, Anna Maria Macromolecules [Image: see text] In this study, liquid droplets of 1-allyl-3-methylimidazolium dicyanamide have been processed by initiated chemical vapor deposition (iCVD) with a cross-linked polymer film consisting of (hydroxyethyl)methacrylate and ethylene glycol dimethacrylate to develop free-standing, ion-conductive membranes. We found that the obtained films are solids and have a conductivity of up to 18 ± 6 mS/cm, associated with the negatively charged counterion, indicating no loss of conductivity, compared to the ionic liquid in the liquid state. The membranes were conductive within a large process window and in air, thanks to the fact that the iCVD process does not affect the mobility of the anion in the ionic liquid. Furthermore, we demonstrate that varying the deposition conditions can influence the homogeneity and conductivity of the resulting membranes. The promising results of this study represent an important stepping stone on the way to novel ion-conductive membranes. American Chemical Society 2020-09-11 2020-09-22 /pmc/articles/PMC7513469/ /pubmed/32981970 http://dx.doi.org/10.1021/acs.macromol.0c01258 Text en Copyright © 2020 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Kräuter, Marianne Tazreiter, Martin Perrotta, Alberto Coclite, Anna Maria Deposition of Ion-Conductive Membranes from Ionic Liquids via Initiated Chemical Vapor Deposition |
title | Deposition of Ion-Conductive Membranes from Ionic
Liquids via Initiated Chemical Vapor Deposition |
title_full | Deposition of Ion-Conductive Membranes from Ionic
Liquids via Initiated Chemical Vapor Deposition |
title_fullStr | Deposition of Ion-Conductive Membranes from Ionic
Liquids via Initiated Chemical Vapor Deposition |
title_full_unstemmed | Deposition of Ion-Conductive Membranes from Ionic
Liquids via Initiated Chemical Vapor Deposition |
title_short | Deposition of Ion-Conductive Membranes from Ionic
Liquids via Initiated Chemical Vapor Deposition |
title_sort | deposition of ion-conductive membranes from ionic
liquids via initiated chemical vapor deposition |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513469/ https://www.ncbi.nlm.nih.gov/pubmed/32981970 http://dx.doi.org/10.1021/acs.macromol.0c01258 |
work_keys_str_mv | AT krautermarianne depositionofionconductivemembranesfromionicliquidsviainitiatedchemicalvapordeposition AT tazreitermartin depositionofionconductivemembranesfromionicliquidsviainitiatedchemicalvapordeposition AT perrottaalberto depositionofionconductivemembranesfromionicliquidsviainitiatedchemicalvapordeposition AT cocliteannamaria depositionofionconductivemembranesfromionicliquidsviainitiatedchemicalvapordeposition |