Cargando…
Compressed graph representation for scalable molecular graph generation
Recently, deep learning has been successfully applied to molecular graph generation. Nevertheless, mitigating the computational complexity, which increases with the number of nodes in a graph, has been a major challenge. This has hindered the application of deep learning-based molecular graph genera...
Autores principales: | Kwon, Youngchun, Lee, Dongseon, Choi, Youn-Suk, Shin, Kyoham, Kang, Seokho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513488/ https://www.ncbi.nlm.nih.gov/pubmed/33431050 http://dx.doi.org/10.1186/s13321-020-00463-2 |
Ejemplares similares
-
Efficient learning of non-autoregressive graph variational autoencoders for molecular graph generation
por: Kwon, Youngchun, et al.
Publicado: (2019) -
Uncertainty-aware prediction of chemical reaction yields with graph neural networks
por: Kwon, Youngchun, et al.
Publicado: (2022) -
Molecular search by NMR spectrum based on evaluation of matching between spectrum and molecule
por: Kwon, Youngchun, et al.
Publicado: (2021) -
Exploring Optimal
Reaction Conditions Guided by Graph
Neural Networks and Bayesian Optimization
por: Kwon, Youngchun, et al.
Publicado: (2022) -
Simplitigs as an efficient and scalable representation of de Bruijn graphs
por: Břinda, Karel, et al.
Publicado: (2021)