Cargando…
Revealing the Structure and Oxygen Transport at Interfaces in Complex Oxide Heterostructures via (17)O NMR Spectroscopy
[Image: see text] Vertically aligned nanocomposite (VAN) films, comprising nanopillars of one phase embedded in a matrix of another, have shown great promise for a range of applications due to their high interfacial areas oriented perpendicular to the substrate. In particular, oxide VANs show enhanc...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513580/ https://www.ncbi.nlm.nih.gov/pubmed/32982045 http://dx.doi.org/10.1021/acs.chemmater.0c02698 |
_version_ | 1783586412469157888 |
---|---|
author | Hope, Michael A. Zhang, Bowen Zhu, Bonan Halat, David M. MacManus-Driscoll, Judith L. Grey, Clare P. |
author_facet | Hope, Michael A. Zhang, Bowen Zhu, Bonan Halat, David M. MacManus-Driscoll, Judith L. Grey, Clare P. |
author_sort | Hope, Michael A. |
collection | PubMed |
description | [Image: see text] Vertically aligned nanocomposite (VAN) films, comprising nanopillars of one phase embedded in a matrix of another, have shown great promise for a range of applications due to their high interfacial areas oriented perpendicular to the substrate. In particular, oxide VANs show enhanced oxide-ion conductivity in directions that are orthogonal to those found in more conventional thin-film heterostructures; however, the structure of the interfaces and its influence on conductivity remain unclear. In this work, (17)O NMR spectroscopy is used to study CeO(2)–SrTiO(3) VAN thin films: selective isotopic enrichment is combined with a lift-off technique to remove the substrate, facilitating detection of the (17)O NMR signal from single atomic layer interfaces. By performing the isotopic enrichment at variable temperatures, the superior oxide-ion conductivity of the VAN films compared to the bulk materials is shown to arise from enhanced oxygen mobility at this interface; oxygen motion at the interface is further identified from (17)O relaxometry experiments. The structure of this interface is solved by calculating the NMR parameters using density functional theory combined with random structure searching, allowing the chemistry underpinning the enhanced oxide-ion transport to be proposed. Finally, a comparison is made with 1% Gd-doped CeO(2)–SrTiO(3) VAN films, for which greater NMR signal can be obtained due to paramagnetic relaxation enhancement, while the relative oxide-ion conductivities of the phases remain similar. These results highlight the information that can be obtained on interfacial structure and dynamics with solid-state NMR spectroscopy, in this and other nanostructured systems, our methodology being generally applicable to overcome sensitivity limitations in thin-film studies. |
format | Online Article Text |
id | pubmed-7513580 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-75135802020-09-25 Revealing the Structure and Oxygen Transport at Interfaces in Complex Oxide Heterostructures via (17)O NMR Spectroscopy Hope, Michael A. Zhang, Bowen Zhu, Bonan Halat, David M. MacManus-Driscoll, Judith L. Grey, Clare P. Chem Mater [Image: see text] Vertically aligned nanocomposite (VAN) films, comprising nanopillars of one phase embedded in a matrix of another, have shown great promise for a range of applications due to their high interfacial areas oriented perpendicular to the substrate. In particular, oxide VANs show enhanced oxide-ion conductivity in directions that are orthogonal to those found in more conventional thin-film heterostructures; however, the structure of the interfaces and its influence on conductivity remain unclear. In this work, (17)O NMR spectroscopy is used to study CeO(2)–SrTiO(3) VAN thin films: selective isotopic enrichment is combined with a lift-off technique to remove the substrate, facilitating detection of the (17)O NMR signal from single atomic layer interfaces. By performing the isotopic enrichment at variable temperatures, the superior oxide-ion conductivity of the VAN films compared to the bulk materials is shown to arise from enhanced oxygen mobility at this interface; oxygen motion at the interface is further identified from (17)O relaxometry experiments. The structure of this interface is solved by calculating the NMR parameters using density functional theory combined with random structure searching, allowing the chemistry underpinning the enhanced oxide-ion transport to be proposed. Finally, a comparison is made with 1% Gd-doped CeO(2)–SrTiO(3) VAN films, for which greater NMR signal can be obtained due to paramagnetic relaxation enhancement, while the relative oxide-ion conductivities of the phases remain similar. These results highlight the information that can be obtained on interfacial structure and dynamics with solid-state NMR spectroscopy, in this and other nanostructured systems, our methodology being generally applicable to overcome sensitivity limitations in thin-film studies. American Chemical Society 2020-08-19 2020-09-22 /pmc/articles/PMC7513580/ /pubmed/32982045 http://dx.doi.org/10.1021/acs.chemmater.0c02698 Text en Copyright © 2020 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Hope, Michael A. Zhang, Bowen Zhu, Bonan Halat, David M. MacManus-Driscoll, Judith L. Grey, Clare P. Revealing the Structure and Oxygen Transport at Interfaces in Complex Oxide Heterostructures via (17)O NMR Spectroscopy |
title | Revealing the Structure and Oxygen Transport at Interfaces
in Complex Oxide Heterostructures via (17)O NMR Spectroscopy |
title_full | Revealing the Structure and Oxygen Transport at Interfaces
in Complex Oxide Heterostructures via (17)O NMR Spectroscopy |
title_fullStr | Revealing the Structure and Oxygen Transport at Interfaces
in Complex Oxide Heterostructures via (17)O NMR Spectroscopy |
title_full_unstemmed | Revealing the Structure and Oxygen Transport at Interfaces
in Complex Oxide Heterostructures via (17)O NMR Spectroscopy |
title_short | Revealing the Structure and Oxygen Transport at Interfaces
in Complex Oxide Heterostructures via (17)O NMR Spectroscopy |
title_sort | revealing the structure and oxygen transport at interfaces
in complex oxide heterostructures via (17)o nmr spectroscopy |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513580/ https://www.ncbi.nlm.nih.gov/pubmed/32982045 http://dx.doi.org/10.1021/acs.chemmater.0c02698 |
work_keys_str_mv | AT hopemichaela revealingthestructureandoxygentransportatinterfacesincomplexoxideheterostructuresvia17onmrspectroscopy AT zhangbowen revealingthestructureandoxygentransportatinterfacesincomplexoxideheterostructuresvia17onmrspectroscopy AT zhubonan revealingthestructureandoxygentransportatinterfacesincomplexoxideheterostructuresvia17onmrspectroscopy AT halatdavidm revealingthestructureandoxygentransportatinterfacesincomplexoxideheterostructuresvia17onmrspectroscopy AT macmanusdriscolljudithl revealingthestructureandoxygentransportatinterfacesincomplexoxideheterostructuresvia17onmrspectroscopy AT greyclarep revealingthestructureandoxygentransportatinterfacesincomplexoxideheterostructuresvia17onmrspectroscopy |