Cargando…
Predicting amyloid status using self‐report information from an online research and recruitment registry: The Brain Health Registry
INTRODUCTION: This study aimed to predict brain amyloid beta (Aβ) status in older adults using collected information from an online registry focused on cognitive aging. METHODS: Aβ positron emission tomography (PET) was obtained from multiple in‐clinic studies. Using logistic regression, we predicte...
Autores principales: | Ashford, Miriam T., Neuhaus, John, Jin, Chengshi, Camacho, Monica R., Fockler, Juliet, Truran, Diana, Mackin, R. Scott, Rabinovici, Gil D., Weiner, Michael W., Nosheny, Rachel L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513627/ https://www.ncbi.nlm.nih.gov/pubmed/33005723 http://dx.doi.org/10.1002/dad2.12102 |
Ejemplares similares
-
Machine learning approaches to predicting amyloid status using data from an online research and recruitment registry: The Brain Health Registry
por: Albright, Jack, et al.
Publicado: (2021) -
Unsupervised online neuropsychological test performance for individuals with mild cognitive impairment and dementia: Results from the Brain Health Registry
por: Mackin, R. Scott, et al.
Publicado: (2018) -
Assessing risk for preclinical β-amyloid pathology with APOE, cognitive, and demographic information
por: Insel, Philip S., et al.
Publicado: (2016) -
Brain health registry GenePool study: A novel approach to online genetics research
por: Fockler, Juliet, et al.
Publicado: (2021) -
Associations between Participant Characteristics and Participant Feedback about an Unsupervised Online Cognitive Assessment in a Research Registry
por: Ashford, Miriam T., et al.
Publicado: (2023)