Cargando…

Cotranslational folding of alkaline phosphatase in the periplasm of Escherichia coli

Cotranslational protein folding studies using Force Profile Analysis, a method where the SecM translational arrest peptide is used to detect folding‐induced forces acting on the nascent polypeptide, have so far been limited mainly to small domains of cytosolic proteins that fold in close proximity t...

Descripción completa

Detalles Bibliográficos
Autores principales: Elfageih, Rageia, Karyolaimos, Alexandros, Kemp, Grant, de Gier, Jan‐Willem, von Heijne, Gunnar, Kudva, Renuka
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513700/
https://www.ncbi.nlm.nih.gov/pubmed/32790204
http://dx.doi.org/10.1002/pro.3927
Descripción
Sumario:Cotranslational protein folding studies using Force Profile Analysis, a method where the SecM translational arrest peptide is used to detect folding‐induced forces acting on the nascent polypeptide, have so far been limited mainly to small domains of cytosolic proteins that fold in close proximity to the translating ribosome. In this study, we investigate the cotranslational folding of the periplasmic, disulfide bond‐containing Escherichia coli protein alkaline phosphatase (PhoA) in a wild‐type strain background and a strain background devoid of the periplasmic thiol: disulfide interchange protein DsbA. We find that folding‐induced forces can be transmitted via the nascent chain from the periplasm to the polypeptide transferase center in the ribosome, a distance of ~160 Å, and that PhoA appears to fold cotranslationally via at least two disulfide‐stabilized folding intermediates. Thus, Force Profile Analysis can be used to study cotranslational folding of proteins in an extra‐cytosolic compartment, like the periplasm.