Cargando…
Role of heterocyclic compounds in SARS and SARS CoV-2 pandemic
Coronaviruses have led to severe emergencies in the world since the outbreak of SARS CoV in 2002, followed by MERS CoV in 2012. SARS CoV-2, the novel pandemic caused by coronaviruses that began in December 2019 in China has led to a total of 24,066,076 confirmed cases and a death toll of 823,572 as...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Published by Elsevier Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513919/ https://www.ncbi.nlm.nih.gov/pubmed/33007742 http://dx.doi.org/10.1016/j.bioorg.2020.104315 |
Sumario: | Coronaviruses have led to severe emergencies in the world since the outbreak of SARS CoV in 2002, followed by MERS CoV in 2012. SARS CoV-2, the novel pandemic caused by coronaviruses that began in December 2019 in China has led to a total of 24,066,076 confirmed cases and a death toll of 823,572 as reported by World Health Organisation on 26 August 2020, spreading to 213 countries and territories. However, there are still no vaccines or medications available till date against SARS coronaviruses which is an urgent requirement to control the current pandemic like situations. Since many decades, heterocyclic scaffolds have been explored exhaustively for their anticancer, antimalarial, anti-inflammatory, antitubercular, antimicrobial, antidiabetic, antiviral and many more treatment capabilities. Therefore, through this review, we have tried to emphasize on the anticipated role of heterocyclic scaffolds in the design and discovery of the much-awaited anti-SARS CoV-2 therapy, by exploring the research articles depicting different heterocyclic moieties as targeting SARS, MERS and SARS CoV-2 coronaviruses. The heterocyclic motifs mentioned in the review can serve as crucial resources for the development of SARS coronaviruses treatment strategies. |
---|