Cargando…
The C. elegans GATA transcription factor elt-2 mediates distinct transcriptional responses and opposite infection outcomes towards different Bacillus thuringiensis strains
The nematode Caenorhabditis elegans has been extensively used as a model for the study of innate immune responses against bacterial pathogens. While it is well established that the worm mounts distinct transcriptional responses to different bacterial species, it is still unclear in how far it can fi...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513999/ https://www.ncbi.nlm.nih.gov/pubmed/32970778 http://dx.doi.org/10.1371/journal.ppat.1008826 |
_version_ | 1783586486102261760 |
---|---|
author | Zárate-Potes, Alejandra Yang, Wentao Pees, Barbara Schalkowski, Rebecca Segler, Philipp Andresen, Bentje Haase, Daniela Nakad, Rania Rosenstiel, Philip Tetreau, Guillaume Colletier, Jacques-Philippe Schulenburg, Hinrich Dierking, Katja |
author_facet | Zárate-Potes, Alejandra Yang, Wentao Pees, Barbara Schalkowski, Rebecca Segler, Philipp Andresen, Bentje Haase, Daniela Nakad, Rania Rosenstiel, Philip Tetreau, Guillaume Colletier, Jacques-Philippe Schulenburg, Hinrich Dierking, Katja |
author_sort | Zárate-Potes, Alejandra |
collection | PubMed |
description | The nematode Caenorhabditis elegans has been extensively used as a model for the study of innate immune responses against bacterial pathogens. While it is well established that the worm mounts distinct transcriptional responses to different bacterial species, it is still unclear in how far it can fine-tune its response to different strains of a single pathogen species, especially if the strains vary in virulence and infection dynamics. To rectify this knowledge gap, we systematically analyzed the C. elegans response to two strains of Bacillus thuringiensis (Bt), MYBt18247 (Bt247) and MYBt18679 (Bt679), which produce different pore forming toxins (PFTs) and vary in infection dynamics. We combined host transcriptomics with cytopathological characterizations and identified both a common and also a differentiated response to the two strains, the latter comprising almost 10% of the infection responsive genes. Functional genetic analyses revealed that the AP-1 component gene jun-1 mediates the common response to both Bt strains. In contrast, the strain-specific response is mediated by the C. elegans GATA transcription factor ELT-2, a homolog of Drosophila SERPENT and vertebrate GATA4-6, and a known master regulator of intestinal responses in the nematode. elt-2 RNAi knockdown decreased resistance to Bt679, but remarkably, increased survival on Bt247. The elt-2 silencing-mediated increase in survival was characterized by reduced intestinal tissue damage despite a high pathogen burden and might thus involve increased tolerance. Additional functional genetic analyses confirmed the involvement of distinct signaling pathways in the C. elegans defense response: the p38-MAPK pathway acts either directly with or in parallel to elt-2 in mediating resistance to Bt679 infection but is not required for protection against Bt247. Our results further suggest that the elt-2 silencing-mediated increase in survival on Bt247 is multifactorial, influenced by the nuclear hormone receptors NHR-99 and NHR-193, and may further involve lipid metabolism and detoxification. Our study highlights that the nematode C. elegans with its comparatively simple immune defense system is capable of generating a differentiated response to distinct strains of the same pathogen species. Importantly, our study provides a molecular insight into the diversity of biological processes that are influenced by a single master regulator and jointly determine host survival after pathogen infection. |
format | Online Article Text |
id | pubmed-7513999 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-75139992020-10-01 The C. elegans GATA transcription factor elt-2 mediates distinct transcriptional responses and opposite infection outcomes towards different Bacillus thuringiensis strains Zárate-Potes, Alejandra Yang, Wentao Pees, Barbara Schalkowski, Rebecca Segler, Philipp Andresen, Bentje Haase, Daniela Nakad, Rania Rosenstiel, Philip Tetreau, Guillaume Colletier, Jacques-Philippe Schulenburg, Hinrich Dierking, Katja PLoS Pathog Research Article The nematode Caenorhabditis elegans has been extensively used as a model for the study of innate immune responses against bacterial pathogens. While it is well established that the worm mounts distinct transcriptional responses to different bacterial species, it is still unclear in how far it can fine-tune its response to different strains of a single pathogen species, especially if the strains vary in virulence and infection dynamics. To rectify this knowledge gap, we systematically analyzed the C. elegans response to two strains of Bacillus thuringiensis (Bt), MYBt18247 (Bt247) and MYBt18679 (Bt679), which produce different pore forming toxins (PFTs) and vary in infection dynamics. We combined host transcriptomics with cytopathological characterizations and identified both a common and also a differentiated response to the two strains, the latter comprising almost 10% of the infection responsive genes. Functional genetic analyses revealed that the AP-1 component gene jun-1 mediates the common response to both Bt strains. In contrast, the strain-specific response is mediated by the C. elegans GATA transcription factor ELT-2, a homolog of Drosophila SERPENT and vertebrate GATA4-6, and a known master regulator of intestinal responses in the nematode. elt-2 RNAi knockdown decreased resistance to Bt679, but remarkably, increased survival on Bt247. The elt-2 silencing-mediated increase in survival was characterized by reduced intestinal tissue damage despite a high pathogen burden and might thus involve increased tolerance. Additional functional genetic analyses confirmed the involvement of distinct signaling pathways in the C. elegans defense response: the p38-MAPK pathway acts either directly with or in parallel to elt-2 in mediating resistance to Bt679 infection but is not required for protection against Bt247. Our results further suggest that the elt-2 silencing-mediated increase in survival on Bt247 is multifactorial, influenced by the nuclear hormone receptors NHR-99 and NHR-193, and may further involve lipid metabolism and detoxification. Our study highlights that the nematode C. elegans with its comparatively simple immune defense system is capable of generating a differentiated response to distinct strains of the same pathogen species. Importantly, our study provides a molecular insight into the diversity of biological processes that are influenced by a single master regulator and jointly determine host survival after pathogen infection. Public Library of Science 2020-09-24 /pmc/articles/PMC7513999/ /pubmed/32970778 http://dx.doi.org/10.1371/journal.ppat.1008826 Text en © 2020 Zárate-Potes et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Zárate-Potes, Alejandra Yang, Wentao Pees, Barbara Schalkowski, Rebecca Segler, Philipp Andresen, Bentje Haase, Daniela Nakad, Rania Rosenstiel, Philip Tetreau, Guillaume Colletier, Jacques-Philippe Schulenburg, Hinrich Dierking, Katja The C. elegans GATA transcription factor elt-2 mediates distinct transcriptional responses and opposite infection outcomes towards different Bacillus thuringiensis strains |
title | The C. elegans GATA transcription factor elt-2 mediates distinct transcriptional responses and opposite infection outcomes towards different Bacillus thuringiensis strains |
title_full | The C. elegans GATA transcription factor elt-2 mediates distinct transcriptional responses and opposite infection outcomes towards different Bacillus thuringiensis strains |
title_fullStr | The C. elegans GATA transcription factor elt-2 mediates distinct transcriptional responses and opposite infection outcomes towards different Bacillus thuringiensis strains |
title_full_unstemmed | The C. elegans GATA transcription factor elt-2 mediates distinct transcriptional responses and opposite infection outcomes towards different Bacillus thuringiensis strains |
title_short | The C. elegans GATA transcription factor elt-2 mediates distinct transcriptional responses and opposite infection outcomes towards different Bacillus thuringiensis strains |
title_sort | c. elegans gata transcription factor elt-2 mediates distinct transcriptional responses and opposite infection outcomes towards different bacillus thuringiensis strains |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513999/ https://www.ncbi.nlm.nih.gov/pubmed/32970778 http://dx.doi.org/10.1371/journal.ppat.1008826 |
work_keys_str_mv | AT zaratepotesalejandra thecelegansgatatranscriptionfactorelt2mediatesdistincttranscriptionalresponsesandoppositeinfectionoutcomestowardsdifferentbacillusthuringiensisstrains AT yangwentao thecelegansgatatranscriptionfactorelt2mediatesdistincttranscriptionalresponsesandoppositeinfectionoutcomestowardsdifferentbacillusthuringiensisstrains AT peesbarbara thecelegansgatatranscriptionfactorelt2mediatesdistincttranscriptionalresponsesandoppositeinfectionoutcomestowardsdifferentbacillusthuringiensisstrains AT schalkowskirebecca thecelegansgatatranscriptionfactorelt2mediatesdistincttranscriptionalresponsesandoppositeinfectionoutcomestowardsdifferentbacillusthuringiensisstrains AT seglerphilipp thecelegansgatatranscriptionfactorelt2mediatesdistincttranscriptionalresponsesandoppositeinfectionoutcomestowardsdifferentbacillusthuringiensisstrains AT andresenbentje thecelegansgatatranscriptionfactorelt2mediatesdistincttranscriptionalresponsesandoppositeinfectionoutcomestowardsdifferentbacillusthuringiensisstrains AT haasedaniela thecelegansgatatranscriptionfactorelt2mediatesdistincttranscriptionalresponsesandoppositeinfectionoutcomestowardsdifferentbacillusthuringiensisstrains AT nakadrania thecelegansgatatranscriptionfactorelt2mediatesdistincttranscriptionalresponsesandoppositeinfectionoutcomestowardsdifferentbacillusthuringiensisstrains AT rosenstielphilip thecelegansgatatranscriptionfactorelt2mediatesdistincttranscriptionalresponsesandoppositeinfectionoutcomestowardsdifferentbacillusthuringiensisstrains AT tetreauguillaume thecelegansgatatranscriptionfactorelt2mediatesdistincttranscriptionalresponsesandoppositeinfectionoutcomestowardsdifferentbacillusthuringiensisstrains AT colletierjacquesphilippe thecelegansgatatranscriptionfactorelt2mediatesdistincttranscriptionalresponsesandoppositeinfectionoutcomestowardsdifferentbacillusthuringiensisstrains AT schulenburghinrich thecelegansgatatranscriptionfactorelt2mediatesdistincttranscriptionalresponsesandoppositeinfectionoutcomestowardsdifferentbacillusthuringiensisstrains AT dierkingkatja thecelegansgatatranscriptionfactorelt2mediatesdistincttranscriptionalresponsesandoppositeinfectionoutcomestowardsdifferentbacillusthuringiensisstrains AT zaratepotesalejandra celegansgatatranscriptionfactorelt2mediatesdistincttranscriptionalresponsesandoppositeinfectionoutcomestowardsdifferentbacillusthuringiensisstrains AT yangwentao celegansgatatranscriptionfactorelt2mediatesdistincttranscriptionalresponsesandoppositeinfectionoutcomestowardsdifferentbacillusthuringiensisstrains AT peesbarbara celegansgatatranscriptionfactorelt2mediatesdistincttranscriptionalresponsesandoppositeinfectionoutcomestowardsdifferentbacillusthuringiensisstrains AT schalkowskirebecca celegansgatatranscriptionfactorelt2mediatesdistincttranscriptionalresponsesandoppositeinfectionoutcomestowardsdifferentbacillusthuringiensisstrains AT seglerphilipp celegansgatatranscriptionfactorelt2mediatesdistincttranscriptionalresponsesandoppositeinfectionoutcomestowardsdifferentbacillusthuringiensisstrains AT andresenbentje celegansgatatranscriptionfactorelt2mediatesdistincttranscriptionalresponsesandoppositeinfectionoutcomestowardsdifferentbacillusthuringiensisstrains AT haasedaniela celegansgatatranscriptionfactorelt2mediatesdistincttranscriptionalresponsesandoppositeinfectionoutcomestowardsdifferentbacillusthuringiensisstrains AT nakadrania celegansgatatranscriptionfactorelt2mediatesdistincttranscriptionalresponsesandoppositeinfectionoutcomestowardsdifferentbacillusthuringiensisstrains AT rosenstielphilip celegansgatatranscriptionfactorelt2mediatesdistincttranscriptionalresponsesandoppositeinfectionoutcomestowardsdifferentbacillusthuringiensisstrains AT tetreauguillaume celegansgatatranscriptionfactorelt2mediatesdistincttranscriptionalresponsesandoppositeinfectionoutcomestowardsdifferentbacillusthuringiensisstrains AT colletierjacquesphilippe celegansgatatranscriptionfactorelt2mediatesdistincttranscriptionalresponsesandoppositeinfectionoutcomestowardsdifferentbacillusthuringiensisstrains AT schulenburghinrich celegansgatatranscriptionfactorelt2mediatesdistincttranscriptionalresponsesandoppositeinfectionoutcomestowardsdifferentbacillusthuringiensisstrains AT dierkingkatja celegansgatatranscriptionfactorelt2mediatesdistincttranscriptionalresponsesandoppositeinfectionoutcomestowardsdifferentbacillusthuringiensisstrains |