Cargando…
Deep neural network models for identifying incident dementia using claims and EHR datasets
This study investigates the use of deep learning methods to improve the accuracy of a predictive model for dementia, and compares the performance to a traditional machine learning model. With sufficient accuracy the model can be deployed as a first round screening tool for clinical follow-up includi...
Autores principales: | Nori, Vijay S., Hane, Christopher A., Sun, Yezhou, Crown, William H., Bleicher, Paul A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514098/ https://www.ncbi.nlm.nih.gov/pubmed/32970677 http://dx.doi.org/10.1371/journal.pone.0236400 |
Ejemplares similares
-
Identifying incident dementia by applying machine learning to a very large administrative claims dataset
por: Nori, Vijay S., et al.
Publicado: (2019) -
Predicting Onset of Dementia Using Clinical Notes and Machine Learning: Case-Control Study
por: Hane, Christopher A, et al.
Publicado: (2020) -
Machine learning models to predict onset of dementia: A label learning approach
por: Nori, Vijay S., et al.
Publicado: (2019) -
Procedure for Organizing a Post-FDA-approval Evaluation of Antidepressants
por: Alemi, Farrokh, et al.
Publicado: (2022) -
Modeling healthcare authorization and claim submissions using the openEHR dual-model approach
por: Dias, Rigoleta DM, et al.
Publicado: (2011)