Cargando…
Computing the Partial Correlation of ICA Models for Non-Gaussian Graph Signal Processing
Conventional partial correlation coefficients (PCC) were extended to the non-Gaussian case, in particular to independent component analysis (ICA) models of the observed multivariate samples. Thus, the usual methods that define the pairwise connections of a graph from the precision matrix were corres...
Autores principales: | Belda, Jordi, Vergara, Luis, Safont, Gonzalo, Salazar, Addisson |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514127/ https://www.ncbi.nlm.nih.gov/pubmed/33266738 http://dx.doi.org/10.3390/e21010022 |
Ejemplares similares
-
A New Surrogating Algorithm by the Complex Graph Fourier Transform (CGFT)
por: Belda, Jordi, et al.
Publicado: (2019) -
Semi-Supervised Bayesian Classification of Materials with Impact-Echo Signals
por: Igual, Jorge, et al.
Publicado: (2015) -
Fusion Methods for Biosignal Analysis: Theory and Applications
por: Salazar, Addisson, et al.
Publicado: (2017) -
The ‘un-shrunk’ partial correlation in Gaussian graphical models
por: Bernal, Victor, et al.
Publicado: (2021) -
An Overview of ICA/BSS-Based Application to Alzheimer’s Brain Signal Processing
por: Yang, Wenlu, et al.
Publicado: (2021)