Cargando…

On the Impossibility of Learning the Missing Mass

This paper shows that one cannot learn the probability of rare events without imposing further structural assumptions. The event of interest is that of obtaining an outcome outside the coverage of an i.i.d. sample from a discrete distribution. The probability of this event is referred to as the “mis...

Descripción completa

Detalles Bibliográficos
Autores principales: Mossel, Elchanan, Ohannessian, Mesrob I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514132/
https://www.ncbi.nlm.nih.gov/pubmed/33266744
http://dx.doi.org/10.3390/e21010028
Descripción
Sumario:This paper shows that one cannot learn the probability of rare events without imposing further structural assumptions. The event of interest is that of obtaining an outcome outside the coverage of an i.i.d. sample from a discrete distribution. The probability of this event is referred to as the “missing mass”. The impossibility result can then be stated as: the missing mass is not distribution-free learnable in relative error. The proof is semi-constructive and relies on a coupling argument using a dithered geometric distribution. Via a reduction, this impossibility also extends to both discrete and continuous tail estimation. These results formalize the folklore that in order to predict rare events without restrictive modeling, one necessarily needs distributions with “heavy tails”.