Cargando…
A New Recurrence-Network-Based Time Series Analysis Approach for Characterizing System Dynamics
In this paper, a novel analysis method based on recurrence networks is proposed to characterize the evolution of dynamical systems. Through phase space reconstruction, a time series was transformed into a high-dimensional recurrence network and a corresponding low-dimensional recurrence network, res...
Autores principales: | Yang, Guangyu, Xu, Daolin, Zhang, Haicheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514151/ https://www.ncbi.nlm.nih.gov/pubmed/33266761 http://dx.doi.org/10.3390/e21010045 |
Ejemplares similares
-
Interpretable Recurrent Neural Networks for reconstructing nonlinear dynamical systems from time series observations
por: Durstewitz, Daniel
Publicado: (2021) -
Deciphering Dynamical Nonlinearities in Short Time Series Using Recurrent Neural Networks
por: Nagarajan, Radhakrishnan
Publicado: (2019) -
Dynamics analysis of neural univariate time series by recurrence plots
por: Tošić, Tamara, et al.
Publicado: (2015) -
The covariance perceptron: A new paradigm for classification and processing of time series in recurrent neuronal networks
por: Gilson, Matthieu, et al.
Publicado: (2020) -
Recurrent Neural Networks for Multivariate Time Series with Missing Values
por: Che, Zhengping, et al.
Publicado: (2018)