Cargando…

The Case for Shifting the Rényi Entropy

We introduce a variant of the Rényi entropy definition that aligns it with the well-known Hölder mean: in the new formulation, the r-th order Rényi Entropy is the logarithm of the inverse of the r-th order Hölder mean. This brings about new insights into the relationship of the Rényi entropy to quan...

Descripción completa

Detalles Bibliográficos
Autores principales: Valverde-Albacete, Francisco J., Peláez-Moreno, Carmen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514153/
https://www.ncbi.nlm.nih.gov/pubmed/33266762
http://dx.doi.org/10.3390/e21010046
_version_ 1783586522423885824
author Valverde-Albacete, Francisco J.
Peláez-Moreno, Carmen
author_facet Valverde-Albacete, Francisco J.
Peláez-Moreno, Carmen
author_sort Valverde-Albacete, Francisco J.
collection PubMed
description We introduce a variant of the Rényi entropy definition that aligns it with the well-known Hölder mean: in the new formulation, the r-th order Rényi Entropy is the logarithm of the inverse of the r-th order Hölder mean. This brings about new insights into the relationship of the Rényi entropy to quantities close to it, like the information potential and the partition function of statistical mechanics. We also provide expressions that allow us to calculate the Rényi entropies from the Shannon cross-entropy and the escort probabilities. Finally, we discuss why shifting the Rényi entropy is fruitful in some applications.
format Online
Article
Text
id pubmed-7514153
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-75141532020-11-09 The Case for Shifting the Rényi Entropy Valverde-Albacete, Francisco J. Peláez-Moreno, Carmen Entropy (Basel) Article We introduce a variant of the Rényi entropy definition that aligns it with the well-known Hölder mean: in the new formulation, the r-th order Rényi Entropy is the logarithm of the inverse of the r-th order Hölder mean. This brings about new insights into the relationship of the Rényi entropy to quantities close to it, like the information potential and the partition function of statistical mechanics. We also provide expressions that allow us to calculate the Rényi entropies from the Shannon cross-entropy and the escort probabilities. Finally, we discuss why shifting the Rényi entropy is fruitful in some applications. MDPI 2019-01-09 /pmc/articles/PMC7514153/ /pubmed/33266762 http://dx.doi.org/10.3390/e21010046 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Valverde-Albacete, Francisco J.
Peláez-Moreno, Carmen
The Case for Shifting the Rényi Entropy
title The Case for Shifting the Rényi Entropy
title_full The Case for Shifting the Rényi Entropy
title_fullStr The Case for Shifting the Rényi Entropy
title_full_unstemmed The Case for Shifting the Rényi Entropy
title_short The Case for Shifting the Rényi Entropy
title_sort case for shifting the rényi entropy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514153/
https://www.ncbi.nlm.nih.gov/pubmed/33266762
http://dx.doi.org/10.3390/e21010046
work_keys_str_mv AT valverdealbacetefranciscoj thecaseforshiftingtherenyientropy
AT pelaezmorenocarmen thecaseforshiftingtherenyientropy
AT valverdealbacetefranciscoj caseforshiftingtherenyientropy
AT pelaezmorenocarmen caseforshiftingtherenyientropy