Cargando…

Rolling Element Bearing Fault Diagnosis under Impulsive Noise Environment Based on Cyclic Correntropy Spectrum

Rolling element bearings are widely used in various industrial machines. Fault diagnosis of rolling element bearings is a necessary tool to prevent any unexpected accidents and improve industrial efficiency. Although proved to be a powerful method in detecting the resonance band excited by faults, t...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Xuejun, Qin, Yong, He, Changbo, Jia, Limin, Kou, Linlin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514157/
https://www.ncbi.nlm.nih.gov/pubmed/33266766
http://dx.doi.org/10.3390/e21010050
Descripción
Sumario:Rolling element bearings are widely used in various industrial machines. Fault diagnosis of rolling element bearings is a necessary tool to prevent any unexpected accidents and improve industrial efficiency. Although proved to be a powerful method in detecting the resonance band excited by faults, the spectral kurtosis (SK) exposes an obvious weakness in the case of impulsive background noise. To well process the bearing fault signal in the presence of impulsive noise, this paper proposes a fault diagnosis method based on the cyclic correntropy (CCE) function and its spectrum. Furthermore, an important parameter of CCE function, namely kernel size, is analyzed to emphasize its critical influence on the fault diagnosis performance. Finally, comparisons with the SK-based Fast Kurtogram are conducted to highlight the superiority of the proposed method. The experimental results show that the proposed method not only largely suppresses the impulsive noise, but also has a robust self-adaptation ability. The application of the proposed method is validated on a simulated signal and real data, including rolling element bearing data of a train axle.